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Abstract
We investigate the feasibility of assembling the exceptionally stable isovalent X@Si16 (X = Ti,
Zr and Hf) nanoparticles to form new bulk materials. We use first-principles density functional
theory. Our results predict the formation of stable, wide band-gap materials crystallizing in
HCP structures in which the cages bind weakly, similar to fullerite. This study suggests new
pathways through which endohedral cage clusters may constitute a viable means toward the
production of synthetic materials with pre-defined physical and chemical properties.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The synthesis of new materials using suitable nano-structures
constitutes a main challenge in nanotechnology. The properties
of such nano-structures which enable a successful synthesis
of stable bulk materials are not yet completely understood,
despite the recent advances [1, 2].

In this quest, considerable attention has been paid to
silicon and silicon clusters, given the technological importance
of this element in the development of electronic devices [3].
Physical limits to the miniaturization of devices based on
bulk silicon have already been met in the recent 45 nm
generation of devices, where a high-k dielectric material such
as HfO2 has replaced SiO2 as a gate insulator [4] for the
first time in the history of integrated circuits. Contrary to
fullerene-like carbon clusters, pure silicon clusters have been
found to be chemically reactive, precluding the synthesis of
cluster assembled materials [1]. On the other hand, early
experiments by Beck [5, 6] indicated the feasibility of using
metal atoms to nucleate silicon atoms into stable X@Sin
clusters, of which X@Si16 was found to be particularly stable.
Recent experimental [1, 7–14] and theoretical [15–23] work
has confirmed these results for a variety of mixed metal–silicon
sandwich [7, 24] and cage [15, 16, 22, 23] clusters, and a
special class of clusters with stoichiometry X@Si16, with X
a metal atom, has been identified [15] as especially stable
by means of ab initio computer simulations. In particular,
the stability of X@Si16 (X = Ti, Zr, Hf) nanoparticles has

been confirmed experimentally [12], via selective formation
of neutral gas phase clusters, using a dual laser vaporization
technique of pure metal and pure silicon targets in an inert
helium atmosphere. An additional experimental confirmation
of the synthesis of these nanoparticles has been reported
recently using a magnetron co-sputtering technique [14]. An
important feature of this class of clusters is the fact that most
of the valence electronic charge density is pulled into the
interior of the cage, conferring them an appreciable amount of
chemical inertia. The Ti@Si16 nanoparticle, in particular, has
been the subject of considerable attention.

In a previous work [25] we investigated the possibility
of using this remarkably stable cluster to synthesize a stable
molecular solid. In this work we extend our previous results
to include the especially stable clusters Zr@Si16 and Hf@Si16.
The fact that Zr and Hf are isovalent to Ti provides an intuitive
basis for expecting that bulk materials using Zr@Si16 and
Hf@Si16 as constituent units are also feasible. However,
we have found [25] that the feasibility of bulk Ti@Si16

relied on a detailed interplay between intra- and inter-cage
binding. Consequently, a careful analysis is needed before
any conclusions can be drawn. Furthermore, by changing the
nature of the nucleating element, one introduces an additional
handle with which to fine-tune the structural and electronic
properties of these materials. The extent to which one can
profit from these extra degrees of freedom will be addressed
here as well.
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Using first-principles computer simulations within density
functional theory we investigate the main electronic properties
of Zr@Si16 and Hf@Si16 clusters and cluster assembled bulk
forms. We show the feasibility of using the clusters as
elementary building blocks to synthesize stable bulk materials,
and find that all the X@Si16 (X = Ti, Zr and Hf) cluster
assembled materials crystallize in hexagonal closed packed
structures (HCP). We further characterize the main structural
and electronic properties of these materials, while illustrating
their differences. We predict that these materials should be
possible to stabilize in a metastable phase at room temperature
and normal pressure conditions. This phase is predicted to be
maintained under isotropic compression up to ∼1 GPa. Similar
to Ti@Si16, both Zr@Si16 and Hf@Si16 are especially stable
semiconductors with GGA (see below) band gaps of 1.6 eV,
0.3 eV larger than that previously found for bulk Ti@Si16.

This paper is organized as follows: in section 2 details
of the method and simulations carried out are provided.
Results and discussion are left to section 3, whereas the main
conclusions and future prospects are postponed to section 4.

2. Methods

All ab initio calculations were performed within the general-
ized gradient approximation (GGA [26]) to density functional
theory (DFT) using norm-conserving pseudopotentials [27]
and a plane-wave basis [28, 29]. An energy cutoff of 30.0
hartree (816 eV) was used throughout, leading to well con-
verged forces within 0.02 eV bohr−1. This value was also used
as a stopping criteria for structural optimizations. Large en-
ergy cutoffs are crucial to ensure reliable results (and good
convergence of the forces). We note that if less restrictive (and
consequently, less computer demanding) parameters are used
in structural optimizations the forces (gradients of the energy
with respect to atomic positions) will be poorly determined.
As a consequence artificial structures and cage breakup can be
obtained using X@Si16 clusters as building blocks.

2.1. Isolated Clusters

2.1.1. Structural optimization. The atomic coordinates of
the isolated clusters were computed employing a supercell
hexagonal lattice with parameters a = c = 27.0 bohr
to avoid mirror-image interactions. To ensure proper
structure determination we performed several Langevin
quantum molecular dynamics [30] (LQMD) simulations at
different temperatures starting from arbitrary configurations
of Si atoms always nucleated around the central metal
atom. Subsequently we performed geometry optimizations
employing a conjugated gradient algorithm starting from the
lowest energy configurations obtained in the LQMD runs.

2.1.2. Electronic properties. We computed the total energy,
the one-electron Kohn–Sham levels as well as the total
valence electronic density ρ(r) of each nano-structure at the
equilibrium configuration. From the electronic density ρ(r)

we constructed the radial electronic density, ρ(r) = ρ(|r|) by
calculating its average over the solid angle:

ρ(r) = 1

4π

∫
�

ρ(r) d�.

The number of valence electrons is given by

N =
∫

d3r ρ(r) =
∫ ∞

0
dr 4πr 2ρ(r) ≡

∫ ∞

0
dr η(r). (1)

The quantity η(r) defined in the last integral can be useful
in quantifying the electronic density inside the nanoparticle,
providing a qualitative measure of its chemical inertia.

We computed the cohesive energy per atom for each
cluster subtracting from the total energy Etot the atomic
energies ESi

ps and EX
ps (X = Ti, Zr, Hf) of the pseudopotential

calculation, Ecoh = (Etot − 16ESi
ps − EX

ps)/17.

2.2. Bulk phase

2.2.1. Structural optimization. In a first step, we
investigate bulk forms of cluster assembled materials, using
the equilibrium structures of the isolated cages. To this end, we
computed the cohesive energy per cluster varying the distance
between clusters in a given bulk structure, while freezing
the cluster geometry and the angles between primitive lattice
vectors. The cohesive energy per cage in the bulk Eb

coh is
defined as

Eb
coh = (Eb

tot − Nc EI)/Nc,

where Eb
tot is the total energy per unit cell, EI is the energy

of the isolated cluster and Nc is the number of clusters in the
unit cell. Several bulk structures were investigated: simple
cubic (SC), diamond-type (DIA), body centred cubic (BCC),
face centred cubic (FCC) and hexagonal close packed (HCP).
We placed 1 cluster per unit cell in the SC, BCC and FCC
structures, and 2 in DIA and HCP. We have also tried to use
supercells for different lattices, but the corrections in energy
were found to be negligible. We have carefully chosen the k-
point sampling in each calculation (particularly for small inter-
cluster distances) in order to ensure well converged results. We
used the following Monkhorst–Pack grids: 2 × 2 × 2 for DIA,
4 × 4 × 4 for SC, BCC and FCC and 3 × 3 × 2 for HCP.

Subsequently we performed a full geometry relaxation
of both atomic coordinates and lattice parameters taking as a
starting point the configuration corresponding to the minimum
of the cohesive energy per cluster as a function of distance
between clusters for the different bulk structures we found
before.

2.2.2. Pressure curve and bulk modulus. Given the cohesive
energy per cluster as a function of the distance d between
clusters, Ecoh(d), we can obtain the pressure as a function
of inter-cage distance P(d) by computing the numerical
derivative from a cubic spline fit to the cohesive energy points:

P(d) = −∂ E

∂V
= −∂ E

∂d

(
∂V

∂d

)−1

.
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Figure 1. The Frank–Kasper [32] cage structures, corresponding to the equilibrium of the X@Si16 nanoparticles. These highly symmetric
structures, exhibiting several C3 symmetry axes, will be used as building blocks of molecular solids. Selected bond angles are also
represented. Angle values are given in table 1.

Table 1. Selected bond angles depicted in figure 1 for the X@Si16

clusters (X = Ti, Zr, Hf). Similar values for the angles have been
identified in amorphous silicon [33].

X@Si16

a
(deg)

b
(deg)

c
(deg)

d
(deg)

e
(deg)

f
(deg)

g
(deg)

Ti 54.6 62.7 60.0 53.1 63.4 120.0 106.4
Zr 54.0 63.0 60.0 52.6 63.7 120.0 108.4
Hf 54.0 63.0 60.0 52.6 63.7 120.0 108.4

For a hexagonal lattice in the ideal packing structure (HCP),
the volume of the primitive cell is V = √

2d3. Thus,

P(d) = − 1

3
√

2d2

∂ E

∂d
= −254.845

d2

∂ E

∂d
, (2)

which provides the pressure in GPa for lengths in bohr and
energies in eV. The Bulk modulus B is determined by fitting
the cohesive energy points to the Birch–Murnaghan equation
of state [31]:

E(V ) = E0 + 9V0 B0

16

{[(
V0

V

) 2
3

− 1

]3

B ′
0

+
[(

V0

V

) 2
3

− 1

]2[
6 − 4

(
V0

V

) 2
3
]}

. (3)

3. Results and discussion

3.1. Isolated clusters

The structures of the isolated X@Si16 nanoparticles obtained
using the procedure outlined in the previous section are shown
in figure 1.

All these nanoparticles exhibit Frank–Kasper [32] cage
structures with C3v symmetry. In table 2 the parameters
characterizing the structural properties of these clusters are
given. We choose three sets of distances: the distance from
the metal atom to the four silicon atoms on the tetrahedral
sites r1; the distance from the metal atom to the remaining
twelve silicon atoms r2, and the minimum nearest neighbour
Si–Si distance r nn

min. The Zr@Si16 and Hf@Si16 have larger

Table 2. Structural parameters for the X@Si16 clusters with X = Ti,
Zr, Hf. r1 is the distance from the metal atom to the four silicon
atoms on the tetrahedral sites, r2 is the distance of the metal atom to
the remaining twelve silicon atoms and r nn

min is the minimum nearest
neighbour Si–Si distance.

X@Si16 r1 (bohr) r2 (bohr) r nn
min

Ti 4.93 5.34 4.49
Zr 5.09 5.40 4.54
Hf 5.09 5.40 4.54

Table 3. Cohesive energy per cluster and HOMO–LUMO gaps for
the X@Si16 clusters with X = Ti, Zr, Hf.

X@Si16 Ecoh/atom (eV) H–L gap (eV)

Ti −4.96 2.3
Zr −4.99 2.4
Hf −4.97 2.5

dimensions than Ti@Si16: r1 and r2 are 3% and 1% larger than
the ones found for Ti@Si16.

Once the ground state geometries have been determined,
we computed their main electronic properties. In table 3 we list
the calculated cohesive energy per atom and HOMO–LUMO
(highest occupied–lowest unoccupied molecular orbital) gap
for these clusters. Whereas the cohesive energies are almost
identical for all cages the Zr@Si16 Hf@Si16 gaps are ∼6%
larger than the one found for Ti@Si16.

In figure 2 we show the radial electronic density of all
the three clusters, which is remarkably similar. Besides their
large HOMO–LUMO gaps, another indication of stability
in these clusters is that almost all of the electronic density
is concentrated inside the cage clusters. The vertical
bars represent the outer limits of the cage cluster, taking
into account the cage radius and the silicon atomic radius
(cf table 2). ∼96% of the electronic charge density is
concentrated inside a sphere of radius 8 bohr, suggesting a
remarkable level of chemical inertia.

In figure 3 we display the one-electron energy levels. The
three nanoparticles exhibit energy level distributions which are
qualitatively similar. The degeneracies of the energy levels can

3
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Figure 2. Normalized radial electronic densities η(r) = 4πr 2ρ(r)
plotted as a function of the distance to the central metal atom for
isolated clusters Ti@Si16 (orange, solid line), Zr@Si16 (red,
dash–dotted line) and Hf@Si16 (brown, dashed line). The radial
electronic density ρ(r) is obtained from the calculated ground state
total electronic density ρ(r) taking its average over the solid angle
�. See equation (1). The total area subtended by each curve is 1.

Figure 3. Energy levels for the X@Si16 clusters with X = Ti, Zr, Hf.
The electronic occupancy of each level is 2. The plotted levels are
grouped according to their approximated degeneracies corresponding
to levels in a spherical (jellium) shell structure with angular momenta
s, p, d, s, f, p, g, d.

be qualitatively organized in the following sequence:

2, 6, 10, 2, 14, 6, 18, 10.

This sequence is in excellent agreement with that resulting
from a spherical-like (jellium) super-atom:

s, p, d, s, f, p, g, d.

Hence, and on top of a structurally stable and highly
symmetric cluster, the 68 valence electrons of each cage cluster
also organize into a spherical closed-shell electronic system.
Consequently these cages qualify as ‘double magic’.

3.2. The bulk phase

We investigate now the possible stability of bulk forms of
the cluster assembled materials. We restrict our analysis

Figure 4. Cohesive energy as a function of inter-cage distance for
bulk structures of X@Si16 clusters with X = Ti, Zr, Hf. For all
crystal structures, nearest neighbour cages are all at the same
distance from any focal cage (for the HCP structure c/a = √

8/3,
see main text for details). The curves for the HCP, FCC, BCC and SC
are drawn with solid lower (black), solid upper (blue), dashed (red)
and dotted (green) lines, respectively. The only curve which exhibits
no bound state corresponds to the DIA structure, drawn with a
(black) dotted line.

to the Frank–Kasper [32] cage structures even though we
are aware that other isomers of M@Si16 have been reported
in the literature [15, 20, 21]. However, no structure
of comparable stability has been identified to date with
stoichiometry M@Si16. Hence we believe this choice is
justified. The existence of a C3v axis in the Frank–Kasper [32]
structure may favour the HCP structure, since C3v is the
point symmetry group of the crystallographic P3m1 hexagonal
group; nonetheless we investigated other possibilities. In
figure 4 we plot the cohesive energy per cluster as a function of
cage–cage distance for the three cluster assembled materials
in their different bulk structures—SC, DIA, BCC, FCC and
HCP. In all cases, the cohesive energy curves for the SC,
BCC, and FCC structures exhibit well defined minima around
17 bohr. They are, however, less stable than the HCP structure.
An entirely different behaviour is found for the DIAmond
structure indicating that in all cases this structure is unstable.
In figure 5 we show in detail the cohesive energy curves for
the three cluster assembled materials in the HCP structure.
The curve for HCP Ti@Si16 has a minimum for a cage–cage
distance of 16.54 bohr and a value at the minimum of only
−0.2 eV, indicating that the cages bind weakly. The significant
reduction of the binding compared to fullerite [34] (cohesive
energy per cluster of −1.6 eV) is related to the role played
by the central metal atom, which effectively pulls the valence
charge density to within the cage, increasing not only the
cluster structural stability but also the HOMO–LUMO gap,

4
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Figure 5. Cohesive energy as a function of inter-cage distance for the
HCP molecular solids Ti@Si16 (orange, solid line), Zr@Si16 (red,
dashed-dotted line) and Hf@Si16 (brown, dashed line).

Table 4. Lattice parameters for the X@Si16 HCP molecular solids
with X = Ti, Zr, Hf. � is the deviation of the ratio of lattice
parameters c/a from the ideal packing value

√
8/3.

X@Si16 a (bohr) c (bohr) � (%)

Ti 16.54 27.13 0.5
Zr 17.11 27.94 0.01
Hf 16.93 28.14 1.8

and therefore reducing its chemical reactivity. The curves for
Zr@Si16 and Hf@Si16 have minima at cage–cage distances of
17.2 bohr and 17.1 bohr respectively. The inter-cage distance
in these two structures is ∼4% larger than the one found for
HCP Ti@Si16. The values of −0.14 and −0.15 eV at the
minimum also indicate that the binding in these bulk materials
is weaker than in the bulk Ti@Si16. These results correlate with
the fact that both Zr@Si16 and Hf@Si16 nanoparticles have a
cage radius ∼3% larger than Ti@Si16. Indeed, a larger cage
radius induces an increase of the inter-cage distance for the
cluster assembled materials and also a decrease of the binding
between clusters given that the same electronic charge is spread
in a larger cluster volume.

Relaxation of both the internal cluster coordinates and
the lattice parameters, starting at the minimum structures of
figure 5, leads to HCP structures characterized by the lattice
parameters summarized in table 4. The atomic rearrangements
within each cluster are negligible compared to the isolated
cluster geometry, the same applying to the overall changes
in cohesive energies. The orientation of the clusters in the
Zr@Si16 and Hf@Si16 HCP structures is compatible with the
p3m1 crystallographic group and identical to that of Ti@Si16

in [25], where it has been explicitly illustrated.
Figure 5 also reveals that, despite the well developed

minima in the cohesive energy per cluster, these minima are
separated by barriers from other equilibrium structures [25],
which turn out to be more stable.

Similar to what was found for Ti@Si16 [25], these systems
will relax to an amorphous structure where silicon atoms
of neighbouring cages bind covalently when subjected, e.g.,
to very high pressures. This covalent binding leads to an

Figure 6. Computed pressure as a function of inter-cage distance for
the HCP molecular solids Ti@Si16 (orange, solid line), Zr@Si16 (red,
dash–dotted line) and Hf@Si16 (brown, dashed line). The curves
were obtained by computing the numerical derivative of the cubic
spline fit to the cohesive energy points used to plot figure 5. See
equation (2).

Table 5. Bulk modulus for the X@Si16 HCP molecular solids with
X = Ti, Zr, Hf.

X@Si16 Bulk modulus (GPa)

Ti 1.25
Zr 0.90
Hf 0.97

absolute increase of the cohesive energy per cluster to −2.2 eV.
However, from figure 5 it is apparent that the values of the
barrier maxima for both Zr@Si16 and Hf@Si16 are larger than
the 0.16 eV found for Ti@Si16. This translates into an increase
in the applied pressure necessary to drive the Zr, Hf@Si16

bulk materials away from their metastable equilibrium HCP
structure. Fully unconstrained geometry relaxations, varying
both the cluster coordinates and unit cell parameters, starting
from a configuration significantly compressed with respect
to the equilibrium HCP configuration, show no sign of
amorphous transition at normal temperature.

In figure 6 we plot the pressure as a function of inter-
cage distance for the three X@Si16, X = Ti, Zr, Hf bulk
materials using the data from the cohesive energy curves and
equation (2). We found that the maxima of the pressure curves
are 0.87 GPa for bulk Zr@Si16 and 0.85 GPa for bulk Hf@Si16,
values ∼8% larger than the 0.79 GPa obtained for the bulk
Ti@Si16, indicating that both bulk Zr@Si16 and Hf@Si16 are
more stable than bulk Ti@Si16 against applied pressure. The
values for the bulk modulus, B , obtained by fitting the Birch–
Murnaghan equation of state, equation (3), to the cohesive
energy points are given in table 5.

Quantum Langevin molecular dynamics (QLMD) simula-
tions [30], starting at the Ti@Si16 HCP equilibrium structure,
suggest that the HCP phase is probably stable at room temper-
ature, as shown in figure 7. QLMD simulations provide a very
efficient test of the overall stability of the system, given the
feasibility of observing the occurrence of structural phase tran-
sitions, whenever they actually take place. QLMD combines
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Figure 7. Upper panel: change of total energy per cage (with respect
to the equilibrium HCP configuration) as a function of time for
variable cell-shape quantum Langevin molecular dynamics of
bulk-Ti@Si16. The simulation started from the HCP structure at a
temperature of 300 K. Lower panel: time dependence of the
percentage deviation (with respect to the equilibrium value) of the
average radius of each cage. The results show the small amplitude of
the oscillations taking place at room temperature, and suggest the
probable stability of this material. The time step used in each
iteration is 2 × 10−15 s, and the simulation ran for a total of
2 × 10−12 s.

some of the advantages of Metropolis Monte Carlo (MC) and
MD simulations. By exploiting the energy gradient the atoms
move collectively to the minima thereby efficiently sampling
the configuration space. This is generally more efficient than a
MC procedure where the position of a single atom is updated at
each step, followed by a recalculation of the energy. The evalu-
ation of the gradients of the energy, i.e. atomic forces and stress
are performed at almost no cost once the energy is determined.

The starting point of the simulation is the equilibrium
HCP structure previously determined. Each atom was given an
average initial kinetic energy corresponding to a temperature
of 300 K. Throughout the simulation the system was in contact
with a heat bath at a constant temperature of 300 K. In the
top panel we depict the energy difference (per cage, in eV)
between the actual configuration at time t and the equilibrium
configuration, where one can observe small oscillations around
an average energy value reflecting the fact that the crystal is
at finite temperature.In the lower panel we depict the time
dependence of the deviation from the equilibrium value of the
average cage radius (in percentage). Both numbers illustrate
the small amplitude nature of the oscillations taking place1.

1 The very demanding nature of the computer simulations ultimately dictates
the total QLMD simulation time. Besides the large energy cutoff of 30 hartree
required to ensure convergence of inter-atomic forces, no symmetry was
enforced, such that both atomic coordinates and cell-shape parameters were
allowed to vary simultaneously. The total simulation time of 2 ps provides
some evidence of the stability of this new molecular crystal. Nonetheless this
does not fully warrant, however, its stability.

Figure 8. Calculated band structures of bulk X@Si16 with X = Ti,
Zr, Hf. These molecular materials are predicted to be indirect gap
semiconductors. Both Zr@Si16 and Hf@Si16 have larger band gaps
than Ti@Si16.

Finally in figure 8 we show the calculated band structures
for the three bulk structures determined above. All three
molecular solids are semiconductors with indirect band gaps
of 1.3 eV (Ti@Si16) and 1.6 eV (Zr@Si16 and Hf@Si16).

4. Conclusions

Making use of first-principles computer simulations in the
framework of density functional theory, we have investigated
the main structural and electronic properties of the isovalent
X@Si16 (X = Ti, Zr, Hf) nanoparticles. We showed
the feasibility of using these remarkably stable clusters to
synthesize molecular solids and we characterized their main

6
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structural and electronic properties. Similar to bulk Ti@Si16,
we found that bulk Zr@Si16 and Hf@Si16 also crystallize in
HCP structures with ∼4% larger inter-cage distance, compared
to HCP-Ti@Si16. These bulk materials have a phase stability
under isotropic compression up to ∼1 GPa and bulk modulus
also ∼1 GPa. Fully unconstrained LQMD simulations of the
bulk structures suggest their stability at room temperature and
normal pressure. Our calculations lead to band gaps of 1.6 eV
for Zr@Si16 and Hf@Si16. Taking into account that GGA
systematically underestimates semiconductor band gaps it is
likely that the true band gap is larger than 2 eV.

Synthesis of microcrystallites of these materials should be
attainable in laboratory conditions [12, 14].

The results obtained here suggest an interesting hierar-
chical rationale for the design of cluster assembled materials.
Starting from the well known properties of the atoms, one can
design target nanoparticles with pre-defined properties which,
as such, are the constituent elements of new bulk materials.
Furthermore, as shown here, when the nano-cage nucleates
around a central atom, one can use at profit the size of the nu-
cleating atom—via isovalent replacement—to manipulate the
cage size and, consequently, the bulk lattice, with direct impli-
cations on the band gap. This provides an additional degree
of freedom which may prove very useful in, e.g., the quest for
nano-designed, superconducting alloys. Taking fullerite as a
model template, to the extent that doped bulk-X@Si16 is su-
perconducting, changing the doping element and the nucleat-
ing nano-cage atom may provide additional laboratory knobs to
tune the superconducting gap. In this context, it is worth noting
that Zr and Hf exhibit properties similar in most respects; how-
ever, tables 4 and 5 show that the inter-cage organization in the
crystal has subtle differences which may be of relevance. Work
along these lines is in progress. We further hope that our results
stimulate experiments aimed at synthesizing these materials in
the lab [12, 14].
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